Roll No. \qquad

F-3771

B.Sc. (Part - III) Examination, 2022
(OLD/NEW Course) MATHEMATICS (Optional) PAPER THIRD (II) (Discrete Mathematics)

Time : Three Hours]
[Maximum Marks:50

नोट : प्रत्येक प्रश्न से कोई दो भाग हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Note : Attempt any two parts of each question. All questions carry equal marks.

$$
\text { इकाई - } 1 \text { / Unit -1 }
$$

1. (अ) आगमन विधि द्वारा सिद्ध कीजिए कि :

$$
n!\geq 2^{n} \text { सभी } n \geq 4 \text { के लिए }
$$

Prove by induction method that

$$
n!\geq 2^{n} \text { for all } n \geq 4
$$

(ब) यदि $G=(\{0,1\},\{s\}, s,\{s \rightarrow 0 s 1, s \rightarrow \wedge\}$ एक व्याकरण है, तो $L(G)$ ज्ञात कीजिए।

If $G=(\{0,1\},\{s\}, s,\{s \rightarrow 0 s 1, s \rightarrow \wedge\}$ is a grammar, find $L(G)$.
(स) एक चेसबोर्ड से यदृच्छया चार वर्गों को चुना जाता है, तो उनके एक विकर्ण में होने की प्रायिकता ज्ञात कीजिए।

If four squares are chosen at random on a chessboard, find the chance that they should be in a diagonal line.

इकाई - 2 / Unit - 2

2. (अ) मान लो $A=\{1,2,3,4,6,8,9,12,18,24\}$ संबंध " a, b को विभाजित करता है" द्वारा क्रमित है। A का हैसूह आरेख खींचिए।

Let $A=\{1,2,3,4,6,8,9,12,18,24\}$ be ordered by the relation "a divides b ". Draw the Hasse diagram of A.
(ब) मान लो (L, \leq) एक लैटिस है तथा मान लो \wedge तथा \vee में L क्रमशः अवसंधि तथा सम्मिलन संक्रियाओं को निरूपित करते हैं। तब किन्हीं $a, b \in L$ के लिए सिद्ध कीजिए कि :
(i) $a \leq b \Leftrightarrow a \wedge b=a$
(ii) $a \leq b \Leftrightarrow a \vee b=b$

Let (L, \leq) be a lattice and let \wedge and \vee denote the operations of meet and join in L. Then prove that for any $a, b \in L$:
(i) $a \leq b \Leftrightarrow a \wedge b=a$
(ii) $a \leq b \Leftrightarrow a \vee b=b$
(स) किसी समतलीय सम्बद्ध आरेख में दर्शाइए कि :

$$
v-e+r=2
$$

जहाँ v, e व r क्रमशः आरेख के शीर्ष, कोर व क्षेत्र हैं।
For any connected planar graph, prove that:

$$
v-e+r=2
$$

Where v, e and r are the number of vertices, edges and regions of the graph respectively.

इकाई - 3 / Unit - 3

3. (अ) एक परिमित अवस्था यंत्र M की अभिकल्पना कीजिए जो दो द्वि-आधारी संख्याओं का योग कर सके।

Design a finite state machine M which can add two binary numbers.
(ब) मान लो a एक संख्यात्मक फलन है जो

$$
a_{r}=\left\{\begin{array}{lc}
2, & 0 \leq r \leq 3 \\
2^{-r}+5, & r \geq 4
\end{array}\right.
$$

से दिया जाता है, तो Δa तथा ∇a का निर्धारण कीजिए।
Let a be a numeric function given by

$$
a_{r}=\left\{\begin{array}{lc}
2, & 0 \leq r \leq 3 \\
2^{-r}+5, & r \geq 4
\end{array}\right.
$$

then determine Δa and ∇a.
(स) $a_{0}=0, a_{1}=1$ सहित $a_{r}=a_{r-1}+a_{r 2}, r \geq 2$ से परिभाषित फिबोनाशी अनुक्रम $\left\{a_{r}\right\}$ के लिए जनक फलन ज्ञान कीजिए।

Find the generating function for the Fibonacci sequence $\left\{a_{r}\right\}$ defined by $a_{r}=a_{r-1}+a_{r-2}, r \geq 2$ with $\mathrm{a}_{0}=0, \mathrm{a}_{1}=1$.

$$
\text { इकाई - } 4 \text { / Unit - } 4
$$

4. (अ) अंतर समीकरण

$$
a_{r}-4 a_{r-1}+4 a_{r-2}=(r+1) \cdot 2^{r} \text { को हल कीजिए। }
$$

Solve the difference equation

$$
a_{r}-4 a_{r-1}+4 a_{r-2}=(r+1) \cdot 2^{r}
$$

(ब) जनक फलन विधि से निम्नलिखित अंतर समीकरण का हल ज्ञात कीजिए:

$$
a_{r+2}-3 a_{r+1}+2 a_{r}=0, r \geq 0
$$

दिया है : $a_{0}=2, a_{1}=3$.
Solve the following difference equation by using generating function method:

$$
a_{r+2}-3 \cdot a_{r+1}+2 a_{r}=0, \quad r \geq 0
$$

given that : $a_{0}=2, a_{1}=3$.
(स) सिद्ध कीजिए कि वलय R के एक अरिक्त उपसमुच्चय S को R का एक उपवलय होने के लिए आवश्यक एवं पर्याप्त प्रतिबंध यह है कि
(i) $\mathrm{S}+(-\mathrm{S})=\mathrm{S}$
(ii) $\mathrm{S} . \mathrm{S} \subseteq \mathrm{S}$

Prove that the necessary and sufficient conditions for a non-empty subset S of a ring R to be a subring of R are:
(i) $\mathrm{S}+(-\mathrm{S})=\mathrm{S}$
(ii) $\mathrm{S} . \mathrm{S} \subseteq \mathrm{S}$

इकाई - 5 / Unit - 5

5. (अ) दर्शाइए कि एक बंटनीय जालक में किन्हीं अवयवों a, b, c के लिए,
$(a \vee b) \wedge c \leq a \vee(b \wedge c)$
Show that for any elements a, b, c in a distribu tive lattice,
$(a \vee b) \wedge c \leq a \vee(b \wedge c)$
(ब) निम्नलिखित फलन का वियोजनीय प्रासामान्य रूप ज्ञात कीजिए :

$$
f(x, y, z)=\left[\left(x+y^{\prime}\right)+\left(y+z^{\prime}\right)^{\prime}+y z\right]
$$

Find the disjunctive normal form of the following function:
$f(x, y, z)=\left[\left(x+y^{\prime}\right)+\left(y+z^{\prime}\right)^{\prime}+y z\right]$
(स) सत्यता सारणी द्वारा सिद्ध कीजिए कि निम्नलिखित सूत्र एक पुनरूक्ति है :
$(P \Leftrightarrow q \wedge r) \Rightarrow(\sim r \Rightarrow \sim P)$
Prove by truth table that the following formula is a tautology:
$(P \Leftrightarrow q \wedge r) \Rightarrow(\sim r \Rightarrow \sim P)$

